Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Spat Stat ; 51: 100691, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2183456

ABSTRACT

Major infectious diseases such as COVID-19 have a significant impact on population lives and put enormous pressure on healthcare systems globally. Strong interventions, such as lockdowns and social distancing measures, imposed to prevent these diseases from spreading, may also negatively impact society, leading to jobs losses, mental health problems, and increased inequalities, making crucial the prioritization of riskier areas when applying these protocols. The modeling of mobility data derived from contact-tracing data can be used to forecast infectious trajectories and help design strategies for prevention and control. In this work, we propose a new spatial-stochastic model that allows us to characterize the temporally varying spatial risk better than existing methods. We demonstrate the use of the proposed model by simulating an epidemic in the city of Valencia, Spain, and comparing it with a contact tracing-based stochastic compartment reference model. The results show that, by accounting for the spatial risk values in the model, the peak of infected individuals, as well as the overall number of infected cases, are reduced. Therefore, adding a spatial risk component into compartment models may give finer control over the epidemic dynamics, which might help the people in charge to make better decisions.

2.
Stoch Environ Res Risk Assess ; 36(3): 893-917, 2022.
Article in English | MEDLINE | ID: covidwho-1491142

ABSTRACT

The current situation of COVID-19 highlights the paramount importance of infectious disease surveillance, which necessitates early monitoring for effective response. Policymakers are interested in data insights identifying high-risk areas as well as individuals to be quarantined, especially as the public gets back to their normal routine. We investigate both requirements by the implementation of disease outbreak modeling and exploring its induced dynamic spatial risk in form of risk assessment, along with its real-time integration back into the disease model. This paper implements a contact tracing-based stochastic compartment model as a baseline, to further modify the existing setup to include the spatial risk. This modification of each individual-level contact's intensity to be dependent on its spatial location has been termed as Contextual Contact Tracing. The results highlight that the inclusion of spatial context tends to send more individuals into quarantine which reduces the overall spread of infection. With a simulated example of an induced spatial high-risk, it is highlighted that the new spatio-SIR model can act as a tool to empower the analyst with a capability to explore disease dynamics from a spatial perspective. We conclude that the proposed spatio-SIR tool can be of great help for policymakers to know the consequences of their decision prior to their implementation.

SELECTION OF CITATIONS
SEARCH DETAIL